As we near the end of the century, the disposal of nuclear waste is becoming a concern. Many nuclear power plants around the world are nearing the end of their operating lives.

The disposal of radioactive waste from nuclear power plants and nuclear missiles is as politically intense an issue as the plants and missiles themselves. Yet the three issues have remained curiously separate in spite of their close physical ties. Few debates on nuclear power or nuclear weapons discuss the problems of waste disposal should the power plant or missile be decommissioned.

Nuclear waste can be generally classified a either "low level" radioactive waste or "high level" radioactive waste. Low level nuclear waste usually includes material used to handle the highly radioactive parts of nuclear reactors (i.e. cooling water pipes and radiation suits) and waste from medical procedures involving radioactive treatments or x-rays. Low level waste is comparatively easy to dispose of. The level of radioactivity and the half life of the radioactive isotopes in low level waste is relatively small. Storing the waste for a period of 10 to 50 years will allow most of the radioactive isotopes in low level waste to decay, at which point the waste can be disposed of as normal refuse.

High level radioactive waste is generally material from the core of the nuclear reactor or nuclear weapon. This waste includes uranium, plutonium, and other highly radioactive elements made during fission. Most of the radioactive isotopes in high level waste emit large amounts of radiation and have extremely long half-lives (some longer than 100,000 years) creating long time periods before the waste will settle to safe levels of radioactivity. This area will describe some of the methods being under consideration, for dealing with this, high level, waste. These include short term storage , long term storage, and transmutation.


WASTE CANNISTERS

The waste are securely confined in the cannisters and stored in disposal facilities inaccessible to intruders.

Categories:

Leave a Reply

    DAILY NUKE

    DAILY NUKE
    COAL VS. URANIUM

    DAILY NUKE

    A chunk of coal and chunk of natural (unenriched) uranium, both weighing the same (1 kg) and both mined and isolated straight out of the earth. If we could suck all the energy out of the coal, it would run a 100W light-bulb for about 4 days. With the uranium, we could run the bulb for about 180 years

    What is Neutron?

    The neutron is a subatomic hadron particle which has the symbol n or n0, no net electric charge and a mass slightly larger than that of a proton. With the exception of hydrogen, nuclei of atoms consist of protons and neutrons, which are therefore collectively referred to as nucleons.

    BE PART OF US